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Previously, it has been shown theoretically that in case of restricted diffusion, e.g. within isolated pores or
cells, a measure of the pore size, the mean radius of gyration, can be estimated from double wave vector
diffusion-weighting experiments. However, these results are based on the assumption of an isotropic ori-
entation distribution of the pores or cells which hampers the applicability to samples with anisotropic or
unknown orientation distributions, such as biological tissue. Here, the theoretical considerations are re-
investigated and generalized in order to describe the signal dependency for arbitrary orientation distri-
butions. The second-order Taylor expansion of the signal delivers a symmetric rank-2 tensor with six
independent elements if the two wave vectors are concatenated to a single six-element vector. With this
tensor approach the signal behavior for arbitrary wave vectors and orientation distributions can be
described as is demonstrated by numerical simulations. The rotationally invariant trace of the tensor rep-
resents a pore size measure and can be determined from three orthogonal directions with parallel and
antiparallel orientation of the two wave vectors. Thus, the presented tensor approach may help to
improve the applicability of double wave vector diffusion-weighting experiments to determine pore or

cell sizes, in particular in biological tissue.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Extensions of the pulsed-gradient diffusion-weighted experi-
ment [1] involving two diffusion-weighting periods applied suc-
cessively in a single experiment, have been first presented by
Cory et al. [2] and Callaghan et al. [3]. Whereas the pulse sequences
used by Cory et al. aimed at assessing the leakage and eccentricity
of diffusion in pores [2], Callaghan et al. investigated the temporal
correlation of displacements in the two successive diffusion-
weighting intervals [3]. Because in the limit of short gradient
pulses the diffusion weighting can be described by a wave vector
when following the analogy to scattering experiments [4], these
approaches can be considered as the two or double wave vector
extensions of the standard, single wave vector experiment.

Later, Mitra theoretically investigated the properties of double
wave vector experiments in more detail [5]. He considered diffu-
sion in isolated pores that is assumed to be fully restricted on
the time scale of the diffusion times and derived general expres-
sions for the signal behavior depending on the two wave vectors
for an infinitely short and an infinitely long mixing time between
the two diffusion weightings.
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From the expression for an infinite mixing time, he concluded
that samples with spherical and ellipsoidal pores can be distin-
guished when comparing double wave vector experiments with
parallel and orthogonal wave vectors even if an isotropic orienta-
tion distribution of the pores is present in the sample. This is of
particular interest as both such samples macroscopically appear
isotropic and cannot be distinguished in a standard, single wave
vector diffusion-weighting experiment. Thus, double wave vector
diffusion weighting could be used to detect and measure anisot-
ropy on a microscopic scale.

This finding has been analyzed for ellipsoidal pores in more de-
tail by Cheng et al. [6] who derived expressions for the signal
behavior depending on the ellipsoid’s axes, and confirmed them
with numerical simulations and experimentally on yeast cells.
More recently, the effect was used to demonstrate microscopic
anisotropy within gray matter of monkey brain in vitro and pig
spinal cord ex vivo [7-9]. Callaghan et al. [10] presented a full 2D
extension of the experiment including an analysis using the in-
verse Laplace transformation which in samples with microscopic
anisotropy yields typical off-diagonal patterns in the 2D spectrum
of the diffusion coefficient as was demonstrated for liquid crystals.

For the other case, i.e. for a vanishing mixing time, Mitra found
for an isotropic orientation distribution that the signal shows a co-
sine dependency on the relative angle between the two wave
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vectors q; in the second order of the g expansion, with the modu-
lation amplitude increasing with pore size. Thus, pore or compart-
ment sizes can be estimated under these conditions, e.g. by
considering the signal difference of two measurements with paral-
lel and antiparallel wave vector orientations, respectively. Experi-
mental demonstrations of this effect have been presented
recently in biological samples [11,12] and extracted pig spinal cord
[13].

Although the experimental results are very promising, in partic-
ular for biomedical research, the assumptions underlying the the-
oretical derivation, either spherical pores or cells or an isotropic
orientation distribution, are commonly not fulfilled in biological
tissue. Moreover, a re-calculation for a given pore shape or orien-
tation distribution is of limited value because these properties
are usually unknown or cannot be taken for granted in the sample
under investigation. Thus, the results presented by Mitra may be
considered unsatisfying for a reliable and accurate cell size estima-
tion in practice.

As a possible solution to this problem, quasi-isotropic acquisi-
tion schemes could be used. Thereby, the parallel-antiparallel ef-
fect would be measured for a large number of isotropically
distributed directions of the diffusion weighting. Averaging the
macroscopic signals of these acquisitions is equivalent to averaging
microscopic signals of pores with different orientations to the mac-
roscopic signal obtained in samples with isotropic orientation dis-
tribution. However, a large number of directions is required to
ensure a sufficient sampling of the directions, resulting in a corre-
spondingly long acquisition time.

In the present study, the theoretical approach used by Mitra is
re-investigated with the aim to derive an orientation-independent
measure of the pore or cell size which can be used for arbitrary ori-
entation distributions. The signal behavior of the double wave vec-
tor experiment with infinitely short fill time can be described by a
rank-2 tensor in the second order of g which delivers the tensor’s
trace as a rotationally invariant, and thus orientation-independent,
measure for the pore or cell size. The equivalence to the result pre-
sented by Mitra is shown and a “reduced” tensor formalism is
introduced that considers parallel and antiparallel wave vector ori-
entations only. Numerical simulations demonstrate the feasibility
of the tensor approaches to describe the observed signal behavior
and to estimate pore or cell sizes from experiments.

2. Theory
2.1. Isotropic orientation distribution

Mitra has evaluated the NMR signal M observed in a double
wave vector diffusion-weighting experiment with wave vectors
q; and q in case of fully restricted diffusion in isolated pores [5].
In the short-pulse approximation (5 — 0) and under the assump-
tions that the time 7p a spin typically requires to diffuse over a dis-
tance comparable to the compartment size is short compared to
the diffusion time A (7p < A) and that the mixing time between
the successive diffusion weightings, 7., is negligible (7, = 0), he
found

M(q,,q,) Zpi(ql),bi(%)f)i(*% -qy) (1)

with p; being the Fourier transformation of the spatial distribution
of the spin density p(r) within the ith pore,

pilq) = /p  pimer. @)

and the summation being performed over all pores of the sample.
The first two factors describe the effect of the diffusion weighting

of the individual wave vectors q; while the third factor represents
their interaction and yields the features unique to the double wave
vector experiment.

For the case of |q| =|q2| = ¢, p(r) = p, and an isotropic orienta-
tion distribution of the pores, Mitra obtained for the Taylor expan-
sion of Eq. (1) to second order

M(q,0) «< 1 - %q2<R2>(2 + cos 0) + 0(g®) 3)
with

R = 2 dr, 4
(R /pr r (4)

called the pore’s mean radius of gyration, and the angle between the
two wave vectors 0. Thus, the NMR signal exhibits a cosine-shaped
angular dependency on 0, introduced by the interaction term,
whose modulation amplitude reflects the effective pore size.

Two other properties inherent to Eq. (3) are interesting: (i) the
diffusion-induced signal decay of wave vectors enclosing angles of
0°, 90°, and 180° exhibit ratios of 3:2:1 and (ii) (R?) can also be
determined by varying q for a fixed 0.

2.2. Arbitrary orientation distributions

To obtain a more general description of the signal behavior that
(i) is applicable to arbitrary orientation distributions and (ii) offers
an approach to determine a rotationally invariant measure of the
effective pore size, the expansion of Eq. (1) will be re-investigated
in the following paragraphs.

Initially, a single pore orientation is considered. The sum signal
then is proportional to that of an individual pore, i.e.

M(q;,9,) < p(4;)P(42) p(—G; — 4p), ()

where the pore index i has been dropped for the sake of clarity. Be-
cause in general q; and q, are independent variables, M(q4,q2) can
be considered as a function of the six-element vector Q = (q}, qg)T.
i.e.

(@)
&= { (42); 3

Eq. (5) then can be re-written as

M(Q) x p1(Q)p2(Q)ps(Q) (7)
with the individual factors also being described as functions of Q as
well:

P1(Q) (Q1,Q2,Q3) = p(qy),

P2(Q) (Q4,Q5,Q6) = p(qy), (8)
/N)B(Q) = p(_Q] - Q4> _QZ - Q57 _Q3 - QG) = /b(_ql - qZ)

The Taylor expansion of a function of n variables x; up to the second
order,

fr %) =F(0,....0) + ina%f(xn..,m

fori=1,2,3

fori=4,56" (6)
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can be written as
1
fE)=a+xboxCx+ - 10

when using X = (;, ..., x,)T, a = f(0), the vector b with

bi=—-f(x)| (11)
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and the rank-2 tensor C with

0o 0

Ci=— —
v 0X; an

fx)

(12)

x=0

The expansion of Eq. (7) up to second order can be written as the
product of the expansions of the individual factors p; up to the same
order. Thus, a closer look to the expansion of Eq. (2) is helpful which
delivers

pl@=Vv+iq | p(r >rdr~qTRq+€( ), (13)
J pore

where V denotes the pore volume and the elements of the 3 x 3 ten-

sor R are given by

R,‘j B p(r)r,—rj dr. (14)

pore

The first order term vanishes if the pore’s center of gravity is chosen
as the origin of the coordinate system, i.e.

p(q) = V——qTRq+6‘(q) (15)

Thus, the expansion of the individual p;(Q) yields

0
@ =V -1 (5 o))
~ 10T 0 n(N3
Q) =V - (0 R)Q+c(Q), (16)
~ -V 10T = 5 O 3
p3Q)=V—3 R R Q+0(Q).

The expansion of Eq. (7) to second order therefore does not contain
products of derivatives of the individual terms but consists only of a
constant term and the sum of the individual second order terms and
is given by

MQ) xV -1Q'TQ (17)
with

2R R
I= < R— 2R>' (18)

These equations have been derived under the assumption of a single
pore population. For multiple pore populations, e.g. with different
orientations, pore shapes or pore sizes, the contributions of the indi-
vidual populations simply need to be summed up according to

V=ypV
1

R- SR, (19)

where j identifies the population and the p; represent their volume
fraction.

Thus, a generalized description of the expected signal behavior
in a double wave vector experiment with 7, =0 is obtained for
arbitrary Q, i.e. wave vectors ¢, and q,. The equivalence to the re-
sult reported by Mitra for the special case of an isotropic orienta-
tion distribution and |q4] = |q2| = g is shown in Appendix A.

It should be noted that Eq. (17) in general does not imply a
cosine-shaped modulation of the signal upon changing 6. This is
due to the fact that for non-spherical pores or cells the signal atten-
uation of each wave vector’s diffusion weighting depends on the
orientation of the corresponding wave vector with respect to the
pores which in general changes when varying 0. This modulation
is superimposed to the restriction effect and can lead to a more
complex angular modulation as will be demonstrated below.

2.3. Pore size measure

Because R;; = R;;, T is also symmetric and has only six indepen-
dent elements that are sufficient to describe the experiment for
arbitrary Q, i.e. wave vectors q; and . Similar to the well-known
diffusion tensor, the T; can be determined from six measurements
with non-collinear Q if the signal without diffusion weighting is
known, e.g. from a separate acquisition.

A rotationally invariant measure of the effective pore size with-
in the sample, Regr, can be derived from the trace of T which is pro-
portional to the trace of R: B

1

Rﬁff74Tr ZR 722 /po.e, r)r?dr
=Y [ oY rga-3

7/ pore; 7 7/ pore;

py(r)r*dr, (20)
or in case of p(r) =

PZ/ 1)

pore;

R = =Tr(R

Rer can be determined from three acquisitions with appropriate Qy
if the signal without diffusion weighting is known. It does not de-
pend on the pore orientation distribution and can also be applied
to a mixture of pore populations. It then represents the square root
of the weighted average of the RZ;; of the individual pore
populations.

Interestingly, the theoretical framework to estimate pore sizes
presented in the last paragraphs does not require the usage of
two wave vectors, neither for the determination of Reg nor to cal-
culate all elements of T. This is due to the fact that the elements
reflecting the specific interaction effect of both wave vectors, the

“off-diagonal” sub-matrices of T (2R), are multiples of the elements
describing the effects of the single wave vectors, the diagonal sub-
matrices (R). For instance, R, and thereby T, can also be determined
by using a single wave vector (q = 0) experiment with different
orientations of q; and a measurement without diffusion weighting.
This is similar to the observation that (R?) of Eq. (3) can be deter-
mined from two acquisitions with different q without changing 0.
However, it is shown in the next paragraphs that ambiguities pres-
ent in single wave vector experiments, e.g. introduced by a com-
partment with unrestricted diffusion, can be resolved with the
double wave vector experiment.

2.4. Contributions of Gaussian diffusion

Consider signal contributions from free diffusing spins, e.g.
those that do not “see” the pore boundaries within the diffusion
time used or are outside of any pore boundaries as in extracellular
space in biological tissue. The signal decay of those spins in the
double wave vector experiment is given by

2 2 24 q2
Miree (G, Q) o< @ 2ePaie AP — @~ AerD(@1+d) (22)

with the free diffusion coefficient D and the effective diffusion time
Aer= A — 6/3. Expanded to second order,

Miree (@, 92) < 1 — AeitD(q] + G3) + O(q°) (23)

is obtained which in the tensor formalism and considered as a func-
tion of Q yields

10
Mfree(Q) x1- effDQ (0 1 )Q (24)
Analogously, the signal of a compartment with anisotropic Gaussian

diffusion which can be described by the well-known diffusion ten-
sor D, can be described by
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v 5)
Mp(@) x1-AaQ'(§ o )@ (25)
In these cases, the diagonal sub-matrices that describe the single
wave vector contributions, are distorted by the contributions of
the compartment with Gaussian diffusion. This reflects the fact that
the signal decay with q observed in a single wave vector experiment
cannot be unambiguously assigned to diffusion in a hindered but
unrestricted compartment or to a restricted compartment. Thus,
an estimation of the pore or cell size with a single wave vector
experiment is hampered in the presence of compartments with
Gaussian diffusion. However, the off-diagonal sub-matrices that re-
flect the interaction of the two wave vectors, do not change. Thus,
the double wave vector effect which is observed upon variation of
0 is unaffected by signal contributions from free diffusion and rep-
resents a straightforward access to the restricted compartment.

2.5. Difference of parallel and antiparallel orientations

In practice, the easiest and most reliable approach to measure
the restriction effect and estimate Res is to compare acquisitions
with parallel and antiparallel orientations of the two wave vectors.
This avoids signal modulations present in samples with non-spher-
ical cells and non-isotropic orientation distributions and mini-
mizes anisotropy effects due to hardware inadequacies like
differing eddy-current behavior or gradient scaling mismatches be-
tween the different physical gradient axes. Furthermore, it is the
most sensitive setup because it reveals the maximum signal differ-
ence of the underlying restriction effect.

Considering the signal difference of parallel and antiparallel
wave vector orientations, some simplification of Eq. (17) can be
achieved. Assuming q=q;=z%(q,, the signal difference of
Q =(q",—q"" and Q.=(q",q")" contains only the off-diagonal
matrices of T and can be re-written as a function of q by

1
AM(q) = 5 (4'Ra + q'Rq — 'R(~q) - (-q)'Rq) = 2q'Rq
=q'2Rq. (26)

Thus, the signal difference observed in experiments with parallel
and antiparallel wave vector orientations is fully described by the
rank-2 tensor R with its six independent elements for any orienta-
tion of q. It should be emphasized that this result is independent of
Gaussian diffusion contributions, which represents the advantage of
the double wave vector experiment. For an isotropic orientation dis-
tribution and p(r) = p, Eq. (26) simplifies to the result of Mitra

AM(@) x 3 pa? (R?) 27)

3. Experimental

To evaluate the presented tensor approach, a self-written IDL
algorithm (version 6.4, ITT Visual Information Solutions, Boulder,
USA) was used to simulate the MR signal of diffusing spins in dou-
ble wave vector experiments and analyze it with respect to the sig-
nal behavior predicted by Eqgs. (17) and (26). Spherical pores and
prolate spheroidal pores (semi-principal axes ratio of 1.825) yield-
ing identical (R?) and with impermeable boundaries were consid-
ered in separate simulations. Relaxation effects were neglected.

Ten thousand spins were observed during the simulation with
random starting points within the pore. For each time unit a ran-
dom, Gaussian displacement was applied with a random step
direction. Diffuse reflection was assumed at the pore boundaries:
in case the new position of a particle calculated was outside of
the pore, an additional calculation step was introduced starting

at the intersection of the particle’s trajectory with the pore bound-
ary with a new random step direction and a step length corre-
sponding to the remaining displacement. Thereby, repetitive
reflections at the pore boundary within a single time step were al-
lowed until the full desired displacement was realized.

For the pore and displacement parameters chosen, tp can be
estimated to values of about 100 time units for the spherical and
between 56 and 187 time units for the spheroidal pores, respec-
tively. The gradient pulse duration ¢ and the mixing time 7., were
one time unit. This is the best approximation to the short-pulse
assumption that avoids an angular dependency of the diffusion-
weighting b value which occurs for 7, < 5. A was 3000 time units
and thus well above 7p.

A fixed orientation of the pores was used with the long axis of
the spheroidal pores oriented along x. For all simulations q; = q2
was assumed. The different direction schemes used for the orienta-
tions of the two wave vectors in the individual simulations are
shown in Fig. 1 and will be explained in more detail in the follow-
ing paragraphs. As a simple approach for a double wave vector
experiment to assess the modulation of the signal with the angle
0 enclosed by the two wave vectors, wave vector orientations with-
in a plane were simulated, e.g. as shown in Fig. 1la (“circle”
scheme). Thereby, a fixed orientation was chosen for the first wave
vector (x in Fig. 1a) while the second uniformly sampled 72 direc-
tions on a circle (in Fig. 1a in the xy plane) to cover the full angular
range of 0. These simulations were performed with the xy, xz, and
yz planes as the circle plane and the first wave vector oriented
along x and y, x and z, and y and z, respectively, yielding six mod-
ulation curves.

For spherical pores, the angular dependency of the MR signal in
these simulations would correspond to the cosine function in Eq.
(3) and would be independent of the orientation of the first wave
vector or the circle plane. For spheroidal pores, however, a more
complex dependency is expected which depends on the chosen
orientations of the circle plane and the first wave vector and which
can be described by Eq. (17). Simulations with these circle direc-
tion schemes were performed (i) to demonstrate the variability
of the angular signal modulation present in non-isotropic pore dis-
tributions and (ii) to confirm the agreement of the observed mod-
ulation with that described by Eq. (17) for a simple double wave
vector experiment. The latter was achieved using a Levenberg-
Marquardt algorithm to fit the simulated data to Eq. (17) for each
of the six curves independently and to estimate the pore geometry
parameters within the circle plane from the fit parameter.

The pore size determined with the circle scheme generally de-
pends on the relative orientation of the circle with respect to the
pores, which usually is unknown in most experiments. Thus, an ex-
tended direction scheme which uniformly covers a sphere can be
used in experiments to yield an pore size estimate that is indepen-
dent of the pore orientation distribution. This is due to the fact that
the signal observed in an isotropic orientation distribution of the
pores for two (fixed) wave vectors that span an angle 0 is equiva-
lent to that obtained for a fixed pore orientation and isotropically
distributed wave vectors if the averaged signal of all wave vector
combinations that enclose the same angle 0 is taken. Or, in other
words, the requirement of isotropy that is needed for a proper, ori-
entation-independent pore estimate is “moved” from the pore ori-
entation distribution in the sample to the wave vectors applied in
the experiment.

For the “isotropic” direction scheme used in the corresponding
simulations, both wave vectors were uniformly distributed over a
sphere (Fig. 1b). Polar coordinates of the diffusion gradient direc-
tions for the first wave vector were determined analytically on
36 circles of latitude in steps of 5°. On each circle, equidistant
directions were defined with the number of directions proportional
to the circle’s circumference and a maximum number of 72 on the
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Fig. 1. Polar plots of the orientations used for the first (+) and second (x) wave vector in the different direction schemes where the longitude corresponds to the angle and the
radius to the latitude (azimuth angle): (a) an example for a “circle” scheme with the first wave vector oriented along x and the second wave vector sampling a circle in the xy
plane, (b) the “isotropic” scheme involving 1651 directions for the first wave vector uniformly distributed over the sphere, (c) the “tensor” scheme with six non-collinear
directions for the first wave vector, respectively, and (d) one of the “trace” schemes used with three orthogonal directions for the first wave vector. In (b), (c), and (d), the
directions of the second wave vector covered those of the first wave vector plus their counterparts with inverted polarity. The distance from the center is proportional to the
azimuth angle with the dashed circles corresponding to /4, /2 (equator), i.e. the xy plane, 37/4, and 7 (south pole), i.e. —z direction. The directions the plots of Figs. 3 and 4a
are based on are marked with a circle in (b) and (c), respectively. Examples for directions with parallel and antiparallel orientations of the first and second wave vector are

marked with a box in (b), (¢), and (d).

equator (steps of 5°) yielding a total number of 1651 directions. For
the second wave vector, these 1651 directions plus their 1651
counterparts with inverted polarities were used to ensure sam-
pling of the parallel and antiparallel orientation for each of the
directions of the first wave vector yielding 3302 directions in total.

The analysis of the according simulations involved the men-
tioned averaging of all signals obtained with the same 0 enclosed
by any of the first and any of the second wave vectors. Thereby,
all combinations of the 1651 directions for the first with the
3302 directions of the second wave vector were analyzed with 0
being rounded to multiples of 5° to ensure that the averaging
was performed over a sufficiently large range of different wave
vector orientations. A cosine-shaped angular dependency, inde-
pendent of the pore geometry, should be observed for these anal-
ysis and (R?) can be estimated.

However, these simulations can also be used to confirm the pre-
sented tensor approach if the individual signal obtained for the dif-
ferent combinations of the first and second wave vector orientation
are considered. For non-spherical pores they not only depend on 6
but also on the orientation of the two wave vectors relative to the
pores and are expected to obey Eq. (17). Thus, the full tensor T can
be determined from these signals. It was calculated with a Leven-
berg-Marquardt algorithm that fits Eq. (17) to the 1651 x 3302
signals obtained for each combination of the first and second wave
vector. Considering only the signal difference observed for parallel

and antiparallel orientations of the two wave vectors along the
1651 directions, an analogous fit to Eq. (26) was performed to
determine the tensor R. In both cases, Resf was calculated from
the tensor’s traces.

In order to demonstrate the applicability of the presented ten-
sor approach which implies that the pore geometry information
of the tensors T or R can be derived from a reduced number of
wave vector orientations, simulations with a so-called “tensor”
direction scheme (Fig. 1c) were performed. It involves six non-col-
linear directions for the first wave vector ((1,1,0)/v2,
(1,-1,0)/v2, (1,0,1)/v2, (-1,0,1)/Vv?2, 0,1,1)/V2,
(0,-1,1)/v/2) representing directions often used in diffusion ten-
sor imaging. For the second wave vector, these directions plus their
inverted polarities were used yielding 12 orientations. A Leven-
berg-Marquardt algorithm was used to fit the 72 and 12 individual
signals obtained when combining all or only the first direction of
the first wave vector with the 12 directions of the second wave
vector, respectively, to Eq. (17) and estimate the elements of T
and the pore size parameter. Furthermore, an analogous fit of the
signal differences of parallel and antiparallel wave vector orienta-
tions observed for the six directions to Eq. (26) was performed to
calculate the elements of R according to Eq. (26), respectively,
and estimate the pore size parameter Re.

If the double wave vector experiment aims to measure the aver-
age pore size, the determination of the trace of the tensor R is ex-
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pected to be sufficient. This can be achieved by using only three
orthogonal directions for the first wave vector and these three
directions plus their counterparts with opposite polarity for the
second wave vector, e.g. as shown in Fig. 1d. Different variants of
this “trace” direction scheme were used in the simulations with
the first wave vector either oriented along the coordinate axes
((1,0,0),(0,1,0),(0,0,1)), using orientations optimized to minimize
gradient durations for an orthogonal direction scheme ((2,2,-1)/3,
(2,-1,2)/3, (-1,2,2)/3, Fig. 1d), or determined randomly with the
boundary condition of orthonormality ((0.2251,0.5831,0.7806),
(0.7849,-0.5834,0.2095), (—0.5776,—0.5654,0.5889)). From the
six signals obtained for each scheme, (R?) can be calculated. It
should be independent of the direction scheme chosen as long as
it obeys orthonormality if the tensor approach is valid.

4. Results

Spherical pores were considered first to confirm the validity and
check the accuracy of the simulation algorithm and parameters
and to yield reference results for a macroscopically isotropic sam-
ple. For the circle schemes the angular modulations are in good
agreement with the cosine shape of Eq. (3) and show only a minor
variation of the pore radius of below 3% (data not shown).

Simulation results obtained with the isotropic direction scheme
are summarized in Fig. 2. The angular dependency of the signal
averaged over all wave vector orientations for a given 0 (Fig. 2a)
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Fig. 2. Simulated MR signal of 10,000 particles diffusing in spherical pores observed
in a double wave vector experiment using the isotropic direction scheme of Fig. 1b,
(a) averaged over all combinations of the first and second wave vector that span an
angle 0 plotted vs. 0 and (b) for parallel (middle) and antiparallel (upper)
orientations of the two wave vectors and their difference (lower) for the 1651
different directions of the scheme (abscissa). The modulation curve of (a) well
agrees with the cosine shape predicted by Mitra. (b) The dashed lines represent the
average value of the corresponding simulated data, the solid line the fit of the signal
difference to Eq. (26). The pore sizes derived from the fits yield about 93% of the
nominal pore radius for both plots. For more details see text.

shows the cosine modulation with 0 described by Eq. (3). The pore
radius estimated from this curve is about 93% of the nominal value.
In Fig. 2b, the signals obtained for the parallel and antiparallel ori-
entation of the two wave vectors and their difference are plotted
for all 1651 individual orientations simulated. Some minor, unex-
pected modulations, in particular for the parallel orientation of
the two wave vectors, are observed and most likely are due to
rounding errors. Correspondingly, a slight deviation from the
spherical symmetry of the pore is obtained when fitting the signal
difference to Eq. (26) yielding 92.5%, 94.6%, and 92.6% of the nom-
inal radius for the three coordinate axes. The off-diagonal elements
were below 3% of the diagonal elements. Thus, despite of a minor
underestimation and a slight systematic anisotropy, the simula-
tions can be considered to be in good agreement with the theoret-
ical results obtained by Mitra.

In Fig. 3, simulated MR signals obtained for spheroidal pores are
shown. For the circle direction scheme (Fig. 1a) which can be con-
sidered to be the simplest approach to investigate the angular
dependency of the signal experimentally, a variety of modulation
shapes is observed (Fig. 3a). They depend on the chosen circle
plane and the orientation of the first wave vector and can deviate
considerably from the cosine shape of spherical pores or isotropic
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Fig. 3. Simulated MR signals obtained for 10,000 particles diffusing in prolate
spheroidal pores (principal axis ratio 1.825, same effective pore radius as the
spherical pore used for Fig. 2) with a single pore orientation. (a) Simulation results
(symbols) obtained for the six different circle schemes (see Fig. 1a) where the first
wave vector is fixed and the second samples a circle, plotted vs. the angle 0 enclosed
by the two wave vectors. Most of the modulations deviate from the cosine shape
observed in samples with isotropic orientation distribution. The solid lines
represent individual fits of Eq. (17) to the simulated data and yielded typical
deviations of about +3% from the nominal values. (b) The signal obtained for the
isotropic direction scheme (see Fig. 1b) averaged over all combinations of the first
and second wave vector that span an angle 0 plotted vs. 0. A cosine-shaped curve is
obtained which yields a pore size of about 96% of the nominal value. For more
details see text.
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orientation distributions which hampers a proper estimation of the
pore size on the basis of such an experiment.

In contrast, the fits to Eq. (17) independently performed for
each of the curves are in good agreement with the simulated data
(Fig. 3a). Pore radii within the circle planes derived from these fits
were typically within +3% of the nominal values with peak devia-
tions of —4% and +8%. For the chosen pore orientation, off-diagonal
elements of R should vanish. For one curve, an off-diagonal ele-
ment with a value of 5% of the minimum diagonal element was ob-
tained but in all other cases the off-diagonal elements were below
1% of the diagonal elements. These results demonstrate the ability
of the presented tensor approach to describe the signal behavior
and to determine pore or cell geometry parameters for a simple
double wave vector experiment in the more general case.

The signal obtained when averaging all contributions of the iso-
tropic direction scheme with the same 0 (Fig. 3b) shows the ex-
pected cosine modulation. It is very similar to the curve obtained
for spherical pores (see Fig. 2a) and yields a mean pore diameter
of about 96% of the nominal value. Thus, it is shown that the isotro-
pic direction scheme (i) is able to reproduce the signal typical for
an isotropic pore orientation distribution in a sample which has
an anisotropic orientation distribution and (ii) yields a good esti-
mate of (R?) in such samples.

Because the presented tensor approach is supposed to describe
the signal behavior for any wave vector orientations relative to the
orientation of the pore, the individual signal contributions ob-
tained with the isotropic direction scheme were also analyzed in
a different manner. The signals simulated for each of the
1651 x 3302, i.e. 5,451,602, wave vector combinations were fitted
to Eq. (17) to determine T. The pore radii derived from the tensor
elements of T were in good agreement with the real value yielding
about 97.6%, 99.5%, and 100.5% of the nominal values and all off-
diagonal elements below 2% of the minimum diagonal element.
Fig. 4 presents a fraction of the simulated data covering 1651 direc-
tions of the second wave vector for three different directions of the
first one (Fig. 4a-c, respectively) together with the curve described
by Eq. (17) using the tensor T determined from the fit. Considering
that only six parameters, the independent tensor elements of T, are
used to approximate the more than 5.4 million data points a rather
good agreement of the theoretical curve with the simulated data is
observed which demonstrates the validity of the presented tensor
formalism.

Having shown that the simulated data can be well described by
the six independent tensor elements of T, it is straightforward to
investigate whether the number of wave vector directions, and
thus the acquisition time in experiments, can be reduced without
deteriorating the reliability or accuracy of the results. Simulations
obtained with the tensor direction scheme are shown in Fig. 5 to-
gether with their fits (solid lines) to Eq. (17). Considering all 72
combinations of the orientations of the first (6 directions) and
the second (12 directions) wave vector delivers the plot shown in
Fig. 5a. The corresponding fit is in good agreement with the simu-
lated data and yields radii of 98.0%, 99.1%, and 100.1% of the nom-
inal values with off-diagonal elements of T which are below 2% of
the minimum diagonal element. Thus, the deviations from the real
values are as marginal as for the isotropic direction scheme
although the number of data points has been reduced considerably.

To further reduce the number of directions, a subset of the sim-
ulations with the tensor direction scheme covering only one direc-
tion for the first wave vector, yielding twelve data points, was
analyzed separately (Fig. 5b). The parameters of this fit correspond
to radii of 98.6%, 103.2%, and 98.8% of the nominal values with all
off-diagonal elements of T being below 3% of the minimum diago-
nal element which still is comparable to those obtained for the iso-
tropic scheme. These results demonstrate that the tensor elements,
and thus the pore geometry parameters and Reg, can be reliably
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Fig. 4. Subset of the simulations of the MR signal performed with the isotropic
direction scheme shown in Fig. 1b for the spheroidal pores. The simulated signal
(diamonds) is shown for three different directions of the first wave vector (a-c,
marked by the circles in Fig. 1b) and 1651 directions of the second wave vector
(abscissa). The solid lines represent the fit of Eq. (17) to the full set of simulated
signals covering more than 5.4 million data points, i.e. a single tensor T describes all
fit curves shown in (a-c). The pore radii calculated from the fit deviated less then 3%
from the nominal value. For more details see Fig. 3 and text.

determined from a few wave vector directions, which in practice
considerably reduces the acquisition time.

As pointed out in Section 2, it is sufficient and expected to be
advantageous to sample only parallel and antiparallel orientations
of the two wave vectors. Fig. 6 summarizes the corresponding re-
sults obtained for the different direction schemes showing the
individual signals for the parallel and the antiparallel orientations
and their difference, respectively, for all orientations of the first
wave vector. The modulation of the curves observed for the isotro-
pic direction scheme (Fig. 6a) is due to the spheroidal pore shape
which yields a more pronounced signal attenuation, and also an in-
creased signal difference, for the longer principal axis. The fit to Eq.
(26) is in good agreement with the simulations and yields 95%,
95%, and 96% of the nominal pore radii and off-diagonal elements
of R below 1% of the diagonal elements. This can be considered
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Fig. 5. Simulated MR signals (diamonds) obtained in the spheroidal pores for the tensor direction scheme (Fig. 1c) using (a) one (marked with the circle in Fig. 1¢) and (b) all
six directions for the first wave vector and twelve directions of the second wave vector. The solid lines represent individual fits of the simulations to Eq. (17) and yielded pore
radii which were within +3% of the nominal value. For more details see Fig. 3 and text.
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Fig. 6. Simulated MR signals (diamonds) in the spheroidal pores for parallel ( x, middle) and antiparallel (+, top) orientation of the wave vectors and their difference (*, bottom) for
different orientations of the first wave vector (abscissa) using the (a) isotropic direction scheme (1651 directions, Fig. 1b), (b) the tensor direction scheme (6 directions, Fig. 1c),
and (c) the three different trace directions schemes (three directions each, example shown in Fig. 1b). Dashed horizontal lines represent the average over all directions and yield
very similar results for all schemes with effective pore sizes varying only by about 2%. Furthermore, they are in good agreement with the results of Fig. 2b which was obtained with
spherical pores with the same effective pore size. The solid line in (a) represents the fit of the signal difference to Eq. (26). For more details see Fig. 3 and text.

to be less accurate than analyzing the full angular coverage but is Fig. 2b for the spherical pores, and which most likely represent a
expected to be a consequence of the additional modulations which numerical but not a physical effect. The averages of the signals
have been observed for the parallel wave vector orientation, e.g. in (0.9483 and 0.8589) and their difference (0.0895) are very similar
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to those obtained for the spherical pores (0.9475, 0.8606, and
0.08687, respectively; compare Fig. 2b) and reflect the identical
(R?) of both pore geometries. The corresponding results for the ten-
sor direction scheme are shown in Fig. 6b. A signal difference of
0.0904 is observed which delivers, to an accuracy of about 1%,
the same R as the isotropic scheme. Thus, Eq. (26) seems to pro-
vide a reasonable description for the signal difference of parallel
and antiparallel wave vector orientations.

The results for the trace direction schemes are shown in
Fig. 6¢. From their data not the full tensor information but only
the trace of R can be determined which however is sufficient to
estimate R.¢. The individual signals and the difference of parallel
and antiparallel orientations show a large variability depending
on the specific orientations used and almost cover the full range
of signal amplitudes and differences observed for the isotropic
scheme. However, the signal difference averaged over the three
orthogonal directions of each scheme yields values of 0.0880,
0.0909, and 0.0904, being quite constant and resulting in an Reg
value deviation within 2% of that obtained for the isotropic
mode. Thus, a rotationally invariant pore or cell size measure
can be obtained accurately from a simple measurement involv-
ing only six acquisitions in addition to one without diffusion
weighting which considerably simplifies double wave vector
experiments that aim to determine pore or cell sizes in samples
with an unknown or non-isotropic pore or cell orientation
distribution.

5. Discussion

The theoretical derivations of Mitra have been re-investigated
in order to derive a more general expression for the signal in dou-
ble wave vector diffusion-weighting experiments of restricted dif-
fusion that does not assume an isotropic orientation distribution of
the pores or cells within the sample. Two rank-2 tensors with six
independent elements can be used to describe the signal in terms
of the wave vectors, either for an arbitrary combination of wave
vectors (T, 6 x 6, six independent elements) or for the signal differ-
ence of parallel and antiparallel wave vector orientations (R, 3 x 3,
six independent elements). Thus, only a small number of diffusion-
weighting measurements is required to obtain a description of the
signal behavior for the general experiment. Furthermore, a rota-
tionally invariant measure of the pore size can be derived from
the traces of T and R which can be determined using three orthog-
onal orientations only. This further shortens the acquisition times
in experiments targeting the pore or cell size.

The numerical simulations of the MR signal for diffusion in
spherical and prolate spheroidal pores are in good agreement with
the theoretical expectations. The theoretical results of Mitra for an
isotropic orientation distribution were confirmed. In the more gen-
eral case, the complex angular signal dependency can be well
approximated with the equations derived, using the six indepen-
dent elements of the tensors T and R as degrees of freedom. The
pore sizes estimated from a fit of the model to the simulated data
are in good agreement with the nominal values with typical devi-
ations of about or below 5% which demonstrates the validity of the
presented theoretical approach.

There seems to be a slight but systematic underestimation of
the pore size when applying the tensor model to the numerical
simulations performed, e.g. for the spherical pores. Most likely this
is due to higher (4th) order contributions in the simulated signal
which were not taken into account in the theory. These contribu-
tions may also explain the more pronounced size deviations for
the analysis considering only parallel and antiparallel gradient ori-
entations where the acquisitions with a higher diffusion-induced
signal decay have a higher relative weighting.

Some systematic angular modulation was observed for the sim-
ulations of spherical pores, in particular for the parallel orientation
of the two wave vectors, which also yields a slightly non-spherical
pore shape even for spherical pores. It is conjectured that these
modulations are due to rounding errors that may not exactly yield
(i) wave vectors with identical length for the different orientations
and (ii) a perfectly spherical pore shape. It also may be possible that
the hidden algorithm of the random number generator also has
some influence on these artifacts. Nevertheless, the observed mod-
ulations are well below those observed for the spheroidal pores and
are not expected to have a significant influence on the results.

An extension of the presented tensor approach could take finite
gradient pulse lengths 4§, diffusion time A, and mixing time 7, into
account, e.g. by using the expressions derived recently by Ozarslan
et al. [14]. This would allow a better approximation of real exper-
iments where the assumptions underlying the presented model
(6 > 0, A> 1tp) usually are not fulfilled. However, these calcula-
tions are expected to be rather challenging and may only yield
solutions if a specific pore geometry is assumed which would be
of limited value for biological tissue where exact information about
the microscopic tissue geometry may be difficult to obtain.

6. Conclusions

A tensor approach to double wave vector diffusion-weighting
experiments on restricted diffusion has been presented which al-
lows to model the signal behavior in the general case of an arbi-
trary orientation distribution of the pores or cells. Six
independent tensor elements, which could be determined from
as few as six diffusion-weighted measurements, are sufficient to
describe the experiment for arbitrary wave vectors, three of which
can be used to determine the trace of the tensor which allows to
estimate a rotationally invariant measure for the pore or cell size.
Thus, the presented approach may help to improve the applicabil-
ity of double wave vector experiments for pore or cell size estima-
tion, in particular in biological tissue.
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Appendix A

First, an isotropic orientation distribution of the identical pores
is assumed yielding

h:‘:—n 47Ing (A.1)
which for p(r) = p is given by
(Riso);j = %p An /pore rir;drdQ = %p /pore rirjo dr. (A.2)
M then is given by

1o R Reo
Mio(@) o V 5 Q ( R. 2R ) Q (A3)
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or when re-substituting Q by q; and q

r2dr(2q? + 243 +2q,4,). (A.5)

pore

1
Miso(qlqu) o« V- gp

For |qq| =|qz| = ¢, using 0 for the angle between q, and q, i.e.
c0s 0 = q1q2/q?, and defining

(R = / P2 dr (A6)
pore
Eq. (A.5) simplifies to
1
Miso(@1.Gz) < V — 5 PG*(R*)(2 + cos 0) (A7)

which corresponds to the result reported by Mitra.

It should be noted that the result holds for a mixture of pore
populations as long as each population has an isotropic orientation
distribution. (R?) then has to be replaced by the averaged sum of
the individual (R?);.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jmr.2008.08.003.
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